On the Complexity of Finding the Chromatic Number of a Recursive Graph II: The Unbounded Case

نویسندگان

  • Richard Beigel
  • William I. Gasarch
چکیده

William I. Gasarch Department of Computer Science Institute for Advanced Study University of Maryland College Park, MD 20742 ABSTRACT A recursive graph is a graph whose edge set and vertex set are both recursive. Although the chromatic number of a recursive graph G (denoted χ(G)) cannot be determined recursively, it can be determined if queries to the halting set are allowed. We show that the problem of determining the chromatic number of a recursive graph with a minimum number of queries to the halting set, is closely related to the unbounded search problem. In particular if f is a non-decreasing function such that ∑

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Complexity of Finding the Chromatic Number of a Recursive Graph I: The Bounded Case

ABSTRACT We classify functions in recursive graph theory in terms of how many queries to K (or ∅ or ∅) are required to compute them. We show that (1) binary search is optimal (in terms of the number of queries to K) for finding the chromatic number of a recursive graph and that no set of Turing degree less than 0 will suffice, (2) determining if a recursive graph has a finite chromatic number i...

متن کامل

On the computational complexity of finding a minimal basis for the guess and determine attack

Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 45  شماره 

صفحات  -

تاریخ انتشار 1989